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Solution. Suppose an ellipse and a hyperbola with foci F; and F; intersect
at P. Then their tangents at that point will be the bisectors of the exterior
and interior angles Fy PF5, respectively. Therefore they are perpendicular.

Theorem 1.2. Suppose the chord PQ contains a focus Fy of the ellipse and
R is the intersection of the tangents to the ellipse at P and Q. Then R is
the center of an excircle of the triangle FoPQ, and Fi is the tangency point
of that circle and the side PQ (Figure 1.14).

FIGURE 1.14

Proof. By the optical property, PR and QR are the bisectors of the exterior
angles of the triangle F5PQ. Therefore R is the center of an excircle. The
tangency point (call it F]) of the excircle and the corresponding side and the
point F» cut the perimeter of the triangle into equal parts, i.e., F{ P+ PF, =
F>Q+QF]. But F; has this property and there is only one such point. Hence
F{ and F; coincide. O

Corollary. The straight line connecting a focus of an ellipse and the inter-
section of the tangents to the ellipse at the ends of a chord containing that
focus is perpendicular to the chord.

For the hyperbola, Theorem 1.2 is also true but the excircle should be
replaced by the incircle.

1.4. The isogonal property of conics
The optical property yields elementary proofs of some amazing results.

Theorem 1.3. From any point P outside an ellipse draw two tangents to
the ellipse, with tangency points X and Y. Then the angles F1PX and
FoPY are equal (Fy and Fy are the foci of the ellipse).

Proof. Let F}, Fj be the reflections of F; and F> in PX and PY, respec-
tively (Figure 1.15).

Then PF| = PF, and PFj = PF,. Moreover, the points Fj, Y and
F} lie on a line (because of the optical property). The same is true for the
points Fp, X and F|. Thus FoF] = X + XF, = RBRY + YF = FF,.
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FIGURE 1.15

Thus, the triangles PF>F| and PF,F; are equal (having three equal sides).
Therefore

LF,PF, +2/F\PX = /F,PF| = /F,PFy = /F,PF; + 2/F,PY.
Hence ZF1PX = /F3PY, which is the desired result.} O

Figure 1.16 shows that a similar property holds for the hyperbola.?

FIGURE 1.16

Suppose now that the ellipse (or hyperbola) with foci F; and F; is in-
scribed in triangle ABC. It follows from the above that ZBAF, = ZCAF5;,
LABF, = /CBF;, and ZACF, = ZBCPF.

We shall show in 2.3 that, in a plane, for any (with rare exceptions)
point X there is a unique point Y such that X and Y are the foci of a

1We consider the case when F; and F; are inside the angle F{ PF, and F lies inside
the angle F> PF{. In the remaining cases the arguments are similar.

2The reader should check two cases: when the tangency points are either on different
branches or on the same branch.
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conic tangent to each side of a triangle. Such Y is said to be the isogonal
conjugate of X with respect to the triangle.

The construction used in the proof of Theorem 1.3, allows one to obtain
yet another interesting result. Since the triangles PF>F] and PF}F; are
equal, the angles PF|Fy and PFF; are also equal. Therefore

/PR X = LPF|F, = /PF\F} = /PFY.
Thus we have proved the following generalization of Theorem 1.2.

Theorem 1.4. In the notation of Theorem 1.3, the line F P is the bisector
of the angle XF1Y (Figure 1.17).

FIGURE 1.17

Theorem 1.5. The locus of points from which a given ellipse is seen at
a right angle (i.e., the tangents to the ellipse drawn from such a point are
perpendicular) is a circle centered at the center of the ellipse (Figure 1.18).

FIGURE 1.18
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Proof. Let F; and F5 be the foci of the ellipse and suppose that the tangents
to the ellipse at X and Y intersect in P. Reflecting F} in PX we have a
point Fj. It follows from Theorem 1.3 that ZXPY = ZF{PF; and F{F; =
FiX+F,X,i.e., the length of the segment F] F> equals the major axis of the
ellipse (the length of the rope tying the goat). The angle F]PF; is right if
and only if F{P? + F,P? = F|FZ (by the Pythagorean theorem). Therefore
XPY is a right angle if and only if Fy P?2 + F»P? equals the square of the
major axis of the ellipse. But it is not difficult to see that this condition
defines a circle. Indeed, suppose Fj has Cartesian coordinates (x1,y1), and
F, has coordinates (z2,y2). Then the coordinates of the desired points P
satisfy the condition

-z +@W—n)+@-2)’+@y—1)?=C,

where C is the square of the major axis. But since the coefficients of 2
and y? are equal (to 2) and the coefficient of xy is zero, the set of points
satisfying this condition is a circle. By virtue of symmetry, its center is the
midpoint of the segment FjF5. O

For the hyperbola such a circle does not always exist. When the angle
between the asymptotes of the hyperbola is acute, the radius of the circle is
imaginary. If the asymptotes are perpendicular, then the circle degenerates
into the point which is the center of the hyperbola.

Example. Given points P, ..., P, and numbers k1, ..., k, and C, the locus
of points X such that k1 X P12 + -+ kX P,f = C is a circle, known as the
Fermat-Apollonius circle. Clearly, it may have an imaginary radius (when?).

Theorem 1.6. Suppose a string is put on an ellipse o and then pulled
tight using a pencil. If the pencil is rotated about the ellipse, it will traverse
another ellipse confocal with a (Figure 1.19).

FIGURE 1.19
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Proof. Clearly, the new figure (call it ;) has a smooth boundary. We shall
show that at each point X on a; the tangent to the new curve coincides with
the bisector of the exterior angle F} X Fy.

Let XM and XN be the tangents to a. Then ZFi XN = ZF, XM, and
hence the bisector ! of the exterior angle NX M coincides with the bisector
of the exterior angle F3 X F». Call it [.

Let Y be an arbitrary point on [ and YL and Y R the tangents to «, as
shown in Figure 1.19. We assume that Y lies “to the left” of X; the other
case is argued similarly.

Let P be the intersection of the lines XM and Y L. It is easy to see that
YN <YR+ <~RN,and v LM < LP+PM. Moreover, since [ is the exterior
bisector of the angle NX P, we have PX + XN < PY 4+ Y N. Therefore

MX+XN+-NM<MX+XN+v-NL+LP+ PM
=PX+XN+-NL+LP<PY+YN+<NL+LP
=LY +YN+<NL
<LY+YR+~RN+<~NL=LY +YR+“RL

(here the arcs are meant to be the arcs under the string). Therefore Y lies
outside ;. The same is true for any point Y on [. It follows that «; contains
a single point of [, i.e., the line is tangent. It also follows at once that the
obtained curve is convex.

Thus the sum of the distances to the foci F; and F3 does not change
with time. Therefore the trajectory of the pencil is an ellipse.

Here is a more rigorous approach to the last claim. Suppose X is outside the
ellipse. Put the pencil at X and pull the string around it and around the ellipse.
Let f(X) be the length of the string and g(X) = F1 X + F» X (a point is understood
as a pair of its coordinates; thus both f and g depend on a pair of real numbers).
One can show that those functions are continuously differentiable and that the
vectors grad f = (3L, %5) and gradg = (22, g%) are nonzero at each point. Then,
by the implicit function theorem, the curve traversed by the pencil with a string of
fixed length (i.e., a level curve of f) is smooth (continuously differentiable). It now
follows that the curve can be parametrized by a differentiable function R = R(t)
(this is again a pair of coordinate functions z = z(t), y = y(t)) whose tangent

vector is different from zero. As shown before, the tangent vector 42 = (42, )
of the curve is tangent to a level curve of g, i.e., it is perpendicular to grad g(R) at

R = R(t). Consider the function g(R(t)). Its derivative is
dg(R(t) _ B dx(t) , 9 dy()
dt Oz dt Oy dt

(this is the orthogonality condition mentioned above), i.e., g(R(t)) is constant. This
means that our curve lies on an ellipse with the same foci. Since any ray starting
at F} must contain a point on our curve, the curve coincides with the ellipse. O

Problem 2. A 2n-gon is circumscribed about a conic with focus F. Its
sides are colored in black and white in an alternating pattern. Prove that
the sum of the angles at which the black sides are seen from F' equals 180°.
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Problem 3. An ellipse is inscribed in a convex quadrilateral such that
its foci lie on the (distinct) diagonals of the quadrilateral. Prove that the
products of the opposite sides are equal.

1.5. Curves of second degree as projections of the circle

Given a circle, draw the perpendicular through its center to the plane of the
circle and pick a point S on it. The lines connecting S to the points of the
circle form a cone. Consider the section of the cone by a plane 7 intersecting
all of its rulings and not perpendicular to its axis of symmetry.

Now inscribe in the cone two spheres touching 7 at points F; and F»
(Figure 1.20).

FIGURE 1.20

Let X be an arbitrary point on the intersection of the cone and the
plane w. The ruling SX intersects the inscribed spheres at points Y7 and
Y3. We have XF; = XY; and X F; = XY5, since the segments of tangents
to a sphere drawn from the same point are equal. Therefore XF; + X F; =
Y1Ys. But Y1Y3 is the segment of the ruling lying between the two planes
perpendicular to the axis of the cone, and its length does not depend on the
choice of X. Hence the intersection of the cone with 7 is an ellipse. The
ratio of its semiaxes depends on the tilt of the plane and, obviously, can take
on any value. Therefore any ellipse can be obtained as a central projection
of the circle.

A similar proof shows that if the secant plane is parallel to two rulings
of the cone, then the cross-section is a hyperbola (Figure 1.21).



